

ECE 344

MICROWAVE FUNDAMENTALS PART1-Lecture 8

Dr. Gehan Sami

Many Slides from: ECE 5317_6351 Microwave Engineering Prof. David R. Jackson

Try to solve:

- i. The SWR on the line.
- ii. The reflection coefficient at the load, and at the input of the line
- iii. The distance from load to the input impedance of the line.
- iv. The distance from the load to the first voltage minimum.
- v. The distance from the load to the first voltage maximum

At the load: Swr=5.8 Γload=0.7∟-135° At the input impedance: Γ input=0.7 \bot -32° β l=129° L= λ *129/360=0.36 λ on smith __>(.5-.438+0.296=.36 λ) Lmin=(0.5-.438) λ =0.062 λ __> β l=22° Lmax= 0.312 λ __> β l=112°

Admittance (Y) Calculations

Note:

Define: $\Gamma' = -\Gamma$

$$Y(-\ell) = \frac{1}{Z(-\ell)} = \frac{1}{Z_0} \left(\frac{1 - \Gamma(-\ell)}{1 + \Gamma(-\ell)} \right)$$

$$=Y_0\left(\frac{1+\left(-\Gamma\left(-\ell\right)\right)}{1-\left(-\Gamma\left(-\ell\right)\right)}\right) \qquad Y_0=\frac{1}{Z_0}$$

$$\Rightarrow Y_n(-\ell) = \frac{Y(-\ell)}{Y_0} = \left(\frac{1 + (-\Gamma(-\ell))}{1 - (-\Gamma(-\ell))}\right) = G_n(-\ell) + jB_n(-\ell)$$

 $Y_n\left(-\ell\right) = \left(\frac{1+\Gamma'}{1-\Gamma'}\right)$

Conclusion: The same Smith chart can be used as an admittance calculator.

 $1+\Gamma$

Same mathematical form as for Z_n : $Z_n(-\ell)$

Admittance (Y) Chart

As an alternative, we can continue to use the original Γ plane, and add admittance curves to the chart.

$$Y_{n}\left(-\ell\right) = \left(\frac{1 + \left(-\Gamma\left(-\ell\right)\right)}{1 - \left(-\Gamma\left(-\ell\right)\right)}\right) = G_{n}\left(-\ell\right) + jB_{n}\left(-\ell\right)$$

Compare with previous Smith chart derivation, which started with this equation:

$$Z_{n}\left(-\ell\right) = \left(\frac{1+\left(\Gamma\left(-\ell\right)\right)}{1-\left(\Gamma\left(-\ell\right)\right)}\right) = R_{n}\left(-\ell\right) + jX_{n}\left(-\ell\right)$$

If $(R_n X_n) = (a, b)$ is some point on the Smith chart corresponding to $\Gamma = \Gamma_0$, Then $(G_n B_n) = (a, b)$ corresponds to a point located at $\Gamma = -\Gamma_0$ (180° rotation).

$$\Rightarrow$$
 $R_n = a$ circle, rotated 180°, becomes $G_n = a$ circle.
and $X_n = b$ circle, rotated 180°, becomes $B_n = b$ circle.

Side note: A 180° rotation on a Smith chart makes a normalized impedance become its reciprocal.

Admittance Smith Chart

Admittance (Y) Chart (cont.)

Impedance and Admittance (*ZY*) Chart

Short-hand version

 Γ plane

Adding Elements

Admittance

A matching network is going to be a combination of elements connected in series AND parallel.

Impedance is well suited when working with series configurations. For example:

$$V = ZI \qquad \qquad Z_L = Z_1 + Z_2$$

Impedance is NOT well suited when working with parallel configurations.

$$Z_{\mathrm{L}} = \frac{Z_1 Z_2}{Z_1 + Z_2}$$

For parallel loads it is better to work with admittance.

$$\mathbf{I} = \mathbf{Y}\mathbf{V} \qquad \mathbf{Y}_1 = \frac{\mathbf{I}}{Z_1} \qquad \mathbf{Y}_L = \mathbf{Y}_1 + \mathbf{Y}_2$$

General Rules

Series and Shunt Elements

Note: The Smith chart is not actually being used as a transmission-line calculator but an impedance/admittance calculator. Hence, the normalizing impedance is arbitrary.

Adding a Series Capacitor

jX = -j1

Z=0.5+j0.7

If we have initial impedance Z=0.5+j0.7 We add a series capacitor

Since resistance does snot change We move on constant circle from j0.7 to -j0.3

Z=0.5-j0.3

Values on ADS for f=1GHz Z=25+j35 Zin=25-j15 1/wc=Zin-Z=50 so C=1/(50*2pi)=3.18pF

Adding a Series Inductor $jX = j1.4 = j\omega L/Z_c$ If we have Z=0.5-j0.4 We add series inductor jX=j1.4 We move on resistance circle Zin=0.5+j1.0 Values on ADS Z=25-j20

Zin=25+j50

jwL=j70 so L=70/(2pi)=11.14nH

Adding a Shunt Capacitor

For ZL=1+j1.0 On admittance chart YL=0.5-j0.5

Adding shunt capacitor With JB=j1

Yin=0.5+j0.5

Read from impedance chart

Zin=1-j1.0

Adding Shunt Inductor

YL=0.2+j0.5

ž Į

adding shunt inductor with JB= - j0.7

Yin=0.2-j0.2

Read from impedance chart Zin=2.4+j2.5

Example 8

what is the input impedance of network shown in Fig below

Solution :use impedance admittance smith chart

ZL			
Z: 1.00000 +j		1.00000	
Y: 0.50000 +j		-0.50000	
Z1,Y1			
Z:	0.55699	+j	0.89652
Y:	0.50000	+j	-0.80479
Z2,Y2			
Z:	0.55699	+j	-0.48811
Y:	1.01549	+j	0.88992
Z3,Y3			
Z:	0.20511	+j	-0.39989
Y:	1.01549	+j	1.97981
Zin,Yin			
Z:	0.20485	+j	0.49905
Y:	0.70391	+j	-1.71486

Example 9

$$Z_{in} = \frac{1}{j\omega C} \left| \left| (R + j\omega L) \right| = \frac{\frac{1}{j\omega C} (R + j\omega L)}{\frac{1}{j\omega C} + (R + j\omega L)} = \frac{R + j\omega L}{1 - \omega^2 L C + j\omega R C}$$

$$= \frac{50 + j(1.5080 \times 10^{10})(3.3157 \times 10^{-9})}{1 - (1.5080 \times 10^{10})^2 (3.3157 \times 10^{-9})(1.9894 \times 10^{-12}) + j(1.5080 \times 10^{10})(50)(1.9894 \times 10^{-12})}$$

$$= 20 - j40 \Omega$$

$$\Gamma = \frac{(20 - j40) - 50}{(20 - j40) + 50} = 0.62 \measuredangle - 98^{\circ}$$
VSWR = 4.2654

Normalized value is used in impedance admittance smith chart (also using ADS smithchart)

