ECE 344

MICROWAVE FUNDAMENTALS PART1-Lecture 8

Dr. Gehan Sami

i. The SWR on the line.
ii. The reflection coefficient at the load, and at the input of the line
iii. The distance from load to the input impedance of the line.
iv. The distance from the load to the first voltage minimum.
v. The distance from the load to the first voltage maximum

Admittance (Y) Calculations

Note:

$$
\begin{aligned}
Y(-\ell) & =\frac{1}{Z(-\ell)}=\frac{1}{Z_{0}}\left(\frac{1-\Gamma(-\ell)}{1+\Gamma(-\ell)}\right) \\
& =Y_{0}\left(\frac{1+(-\Gamma(-\ell))}{1-(-\Gamma(-\ell))}\right) \quad Y_{0}=\frac{1}{Z_{0}} \\
\Rightarrow Y_{n}(-\ell) & =\frac{Y(-\ell)}{Y_{0}}=\left(\frac{1+(-\Gamma(-\ell))}{1-(-\Gamma(-\ell))}\right)=G_{n}(-\ell)+j B_{n}(-\ell)
\end{aligned}
$$

Define: $\quad \Gamma^{\prime}=-\Gamma$

$$
\begin{aligned}
& Y_{n}(-\ell)=\left(\frac{1+\Gamma^{\prime}}{1-\Gamma^{\prime}}\right) \\
& \text { n as for } Z_{n}: \\
&
\end{aligned}
$$

Conclusion: The same Smith chart can be used as an admittance calculator.

Same mathematical form as for Z_{n} :

Admittance (Y) Chart

As an alternative, we can continue to use the original Γ plane, and add admittance curves to the chart.

$$
Y_{n}(-\ell)=\left(\frac{1+(-\Gamma(-\ell))}{1-(-\Gamma(-\ell))}\right)=G_{n}(-\ell)+j B_{n}(-\ell)
$$

Compare with previous Smith chart derivation, which started with this equation:

$$
Z_{n}(-\ell)=\left(\frac{1+(\Gamma(-\ell))}{1-(\Gamma(-\ell))}\right)=R_{n}(-\ell)+j X_{n}(-\ell)
$$

If $\left(R_{n} X_{n}\right)=(a, b)$ is some point on the Smith chart corresponding to $\Gamma=\Gamma_{0}$,
Then $\left(G_{n} B_{n}\right)=(a, b)$ corresponds to a point located at $\Gamma=-\Gamma_{0}$ (180 ${ }^{\circ}$ rotation).
$\Rightarrow R_{n}=a$ circle, rotated 180°, becomes $G_{n}=a$ circle. and $X_{n}=b$ circle, rotated 180°, becomes $B_{n}=b$ circle.

Admittance Smith Chart

Conductance Circles

Susceptance Circles

Admittance (Y) Chart (cont.)

Impedance and Admittance (ZY) Chart

Short-hand version

Γ plane

Using impedance-Admittance Smith Chart

Example 7
Given:
$\Gamma=0.5 \angle+45^{\circ} Z_{o}=50 \Omega$
Find y

Plot Γ
Read coordinates on admittance chart

$$
\begin{aligned}
Y & =\frac{1}{50 \Omega}(0.38-j 0.36) \\
& =(7.6-j 7.2) \cdot 10^{-3} S
\end{aligned}
$$

Admittance

A matching network is going to be a combination of elements connected in series AND parallel.
Impedance is well suited when working with series configurations. For example:

$$
\mathrm{V}=\mathrm{ZI} \quad \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{1}+\mathrm{Z}_{2}
$$

Impedance is NOT well suited when working with parallel configurations.

$$
\mathrm{Z}_{\mathrm{L}}=\frac{\mathrm{Z}_{1} \mathrm{Z}_{2}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}}
$$

For parallel loads it is better to work with

$$
\mathrm{I}=\mathrm{YV} \quad \mathrm{Y}_{1}=\frac{1}{\mathrm{Z}_{1}} \quad \mathrm{Y}_{\mathrm{L}}=\mathrm{Y}_{1}+\mathrm{Y}_{2}
$$

General Rules

Adding Parallel (Shunt) Components
\longrightarrow Admittance Smith Chart

Navigation in the Smith Chart

in blue: Impedance plane (=Z)
in red: Admittance plane $(=\gamma)$

Navigation in the Smith Chart (2)

in blue: Admittance plane $(=Y)$
in red: Impedance plane (=Z)

Shunt C

Series and Shunt Elements

Note: The Smith chart is not actually being used as a transmission-line calculator but an impedance/admittance calculator. Hence, the normalizing impedance is arbitrary.

Adding a Series Capacitor

$$
\mathrm{Z}=0.5+\mathrm{j} 0.7
$$

If we have initial impedance
Z=0.5+j0.7
We add a series capacitor

Since resistance does snot change We move on constant circle from j0.7 to -j0.3

$\mathrm{Z}=0.5-\mathrm{j} 0.3$

Values on ADS for $f=1 \mathrm{GHz}$
Z=25+j35
Zin=25-j15
1/wc=Zin-Z=50
so $C=1 /(50 * 2 \mathrm{pi})=3.18 \mathrm{pF}$

Adding a Series Inductor

$$
\mathrm{jX}=\mathrm{j} 1.4=\mathrm{j} \omega \mathrm{~L} / Z_{\mathrm{c}}
$$

If we have $\mathrm{Z}=0.5-\mathrm{j} 0.4$ We add series inductor jX=j1.4

We move on resistance circle Zin=0.5+j1.0

```
Values on ADS
Z=25-j20
Zin=25+j50
jwL=j70 so L=70/(2pi)=11.14nH
```


Adding a Shunt Capacitor

For $\mathrm{ZL}=1+j 1.0$
On admittance chart
YL=0.5-j0.5
Adding shunt capacitor
With JB=j1
Yin $=0.5+j 0.5$
Read from impedance chart
Zin=1-j1.0

Adding Shunt Inductor

$Y L=0.2+j 0.5$

$$
\underset{\sim}{\frac{1}{1}}
$$

adding shunt inductor
with $\mathrm{JB}=-\mathrm{j} 0.7$

$\mathrm{Yin}=0.2-\mathrm{j} 0.2$
Read from impedance chart
Zin=2.4+j2.5

Example 8

what is the input impedance of network shown in Fig below

Solution :use impedance admittance smith chart

ZL			
z: 1.00000	+j	1.00000	
Y: 0.50000	+ ${ }^{\text {j}}$	-0.50000	
Z1, Y1			
z:	0.55699	+j	0.89652
Y:	0.50000	+j	-0.80479
Z2,Y2			
z:	0.55699	+j	-0.48811
Y:	1.01549	+j	0.88992
	Z3,Y3		
z:	0.20511	+j	-0.39989
Y:	1.01549	+j	1.97981
Zin, Yin			
z:	0.20485	+j	0.49905
Y:	0.70391	+j	-1.71486

$$
\begin{array}{rlr}
Z_{\text {in }} & \left.=\frac{1}{j \omega C} \right\rvert\, \|(R+j \omega L) & \\
& =\frac{1}{j \omega C}(R+j \omega L) & \\
& \frac{1}{j \omega C}+(R+j \omega L) & f=? \\
& =\frac{R+j \omega L}{1-\omega^{2} L C+j \omega R C} & Z_{0}=50 \Omega \\
& =\frac{\mathrm{pF}}{1-\left(1.5080 \times 10^{10}\right)^{2}\left(3.3157 \times 10^{-9}\right)\left(1.9894 \times 10^{-12}\right)+j\left(1.5080 \times 10^{10}\right)(50)\left(1.9894 \times 10^{-12}\right)} \\
& =20-j 40 \Omega \\
\Gamma & =\frac{(20-j 40,-50}{(20-j 40)+50}=0.62 \measuredangle-98^{\circ}
\end{array}
$$

$$
\text { VSWR }=4.2654
$$

Normalized value is used in impedance admittance smith chart (also using ADS smithchart)

e.g. $Z_{L}=20-j 25 \Omega$ $\mathrm{f}=159 \mathrm{MHz} \quad\left(\omega=10^{9}\right)$

$\bar{Z}_{\mathrm{L}}=0.4-\mathrm{j} 0.5$
$\bar{B}=\omega C / Y_{0}=0.02 Z_{0}=1$
$\bar{X}=\omega L / Z_{0}=10 / Z_{0}=0.2$
$\bar{G}=G / Y_{0}=Z_{0} / R=50 / 20=2.5$
$Z_{\text {in }}=50(0.28+j 0.13)=14+j 7 \Omega$
$\Gamma_{\text {in }}=0.57\left(164^{\circ}\right)$

\square Lock Source Impedance
Gamma: 0.57710
\square Lock Load Impedance 162.927

